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1. Agent-Based Modeling Paper
First, read the paper Improving the impact of HIV pre-exposure prophylaxis implementation in small urban
centers among men who have sex with men by Gantenberg et al. available on Canvas (hiv_prep_abm.pdf).
This paper uses agent-based modeling to determine how to allocate PrEP most effectively. Then, respond to
the questions below.

a. Write a 2-3 paragraph summary of the paper.

b. Why do you think agent-based modeling was used to address this question?

c. Give an overview of the model structure (what does an agent represent? how do agents interact?) and
the measures/outcomes reported about the simulation study.

d. What were some of the limitations of the model and approach?

Solution

Research Question: “Which statewide PrEP allocation strategies yield the largest reduction in new
diagnosed cases of HIV—particularly as it pertains to the country’s NHAS target—given a set range of known
demographic and behavioral factors within the MSM population aged 15-74?”

a. In a research attempt to improve current interventions for HIV prevention, this paper introduces a
simulation-based approach for identifying the pre-exposure prophylaxis (PrEP) prescribing strategies
that maximize the population-level impact of statewide implementation. In particular, researchers
discuss the development of a stochastic agent-based model (ABM) that, in simulating the spread of HIV
under various PrEP allocation conditions within a virtual agent population of size N = 25, 000, paints
a rough picture of what we could expect to observe in the population of men who have sex with men
(MSM) between the ages of 15 and 74 in the state of Rhode Island under similar prevention strategies.
The agent-based modeling study thus provides insight into the conditions of PrEP allocation that may
best decrease the rate of HIV transmission, specifically by approximately 25% over a 10-year period,
following the 10-year target reduction of new diagnoses established by the US National HIV/AIDS
Strategy (NHAS) in 2010.

Results showed that prioritizing uninfected MSM with more than 10 yearly sexual partners, especially
in settings with low PrEP coverage, significantly reduces the number of new cases, compared to
other allocation strategies. More importantly, it was shown that in addition to increasing statewide
PrEP exposure, engaging MSM with comparatively large numbers of sexual partners could result in
the 10-year HIV transmission decreases that satisfy the aforementioned NHAS target. Specifically,
investigators found in simulating each prescribing scenario that at least a 25% decrease was achieved
in new infections “when PrEP coverage was sustained at 15% of the HIV-negative population over 10
years”—the largest reduction in new cases at the lowest level of PrEP coverage occurring in the case
where PrEP engagement was focused on the MSM population with the greatest number yearly sexual
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partners (> 10). Notably however, the sustained population-level PrEP coverage needed to meet the
national goal “is substantially higher than current levels of PrEP uptake”. Thus, researchers argue “the
importance of engaging MSM at especially high risk of HIV infection” when PrEP allocation strategies
are implemented at either the state or city level, to maximize its impact on the population while using
up as few resources as possible.

b. The most likely reason investigators decided upon an ABM in response to the primary research question
can be attributed to the fact that they are interested in analyzing the effects of various policies on a
population (i.e., the effects of statewide PrEP allocation strategies on MSM aged 15-74)—specifically,
those which arise form unit-unit interactions rather than from individual-level exposures. That is,
given the causal, yet system-oriented, nature of the problem, an ABM is best able to facilitate the
analysis of the kind of complex network researchers seek to simulate in a way that properly addresses
the interdependence of individuals. Moreover, the fact that the study focuses on a population-level
exposure to not just one, but multiple prescribing strategies, a simulation-based approach like this
one allows researchers to explore their effects under several specified conditions of interest—something
that would simply not be possible in a non-virtual setting, given constraints like time, costs, and the
inability to observe the effects of multiple PrEP allocation strategies on the same population for example.
Additionally, the fact that ABMs are stochastic, such an approach allows investigators to model various
patterns of HIV transmission probabilistically, thereby allowing them to estimate the target population
and corresponding policy effects more effectively than other, potentially non-stochastic, methods.

c. With the motivating idea that identifying the PrEP allocation strategies that minimize statewide HIV
transmission in a virtual setting would increase its effectiveness in the real world, investigators set out
to facilitate such an environment via an ABM wherein N = 25, 000 artificial agents were stochastically
assigned a range of fixed and variable characteristics to simulate Rhode Island’s population of MSM
aged 15-74 according to statewide patient data from a PrEP clinic, distributions discussed in relevant
studies, and other external sources (for approximating sexual tendencies and relationships we could
expect to observe in practice). Specifically, each agent (i.e., unit or individual) in the model was assigned
the following fixed and updated attributes at each time-step.

Fixed Attributes:

• Sexual Role Preference (insertive-only, receptive-only, or versatile), which partially constrains
the pool of individuals with which an agent is likely to have a sexual encounter (e.g., an insertive-only
agent would not be allowed to pair with another exclusively insertive agent in the model).

• Mean Number of Annual Sex Partners, where actual partner numbers vary (annually), but
are based on agents’ corresponding static distributions to allow for year-year behavioral variation
while maintaining sexual tendencies regarding partner acquisition.

• Mean Annual Sex Frequency per Partner , where the number of encounters an agent has
with each partner is derived from taking the (pairwise) mean of their desired annual per-partner
sex frequencies.

Time-Updated Attributes:

• Age, for which agents have a 50% chance of pairing with units within their own age group and a
likelihood of pairing with individuals outside their age group that decreases as a function of age
difference.

• PrEP Status, where agents initiate or discontinue treatment probabilistically.

• HIV Status, where uninfected agents are tested at a starting rate (based on Rhode Island data),
which is then tuned to yield diagnoses in roughly 82% of the simulated population; infected agents
aware of their HIV statuses are subject to decreased risks of transmission (independent of treatment
status) “based on the general observation that HIV-infected MSM reduce certain risk behaviors
post-diagnosis”; and the probability of transmission from a diagnosed HIV-infected agent to a
uninfected unit in a serodiscordant partnership is scaled by a fixed value of 0.5.
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• Status of Viral Suppression, where suppression may be achieved via antiretroviral treatment
(ART) administered stochastically to diagnosed individuals, “with a target rate of viral suppression
among HIV-infected agents of 45%”.

Given that the study incorporates a “death” component into the model, agents who exit the simulation
are also replaced by new uninfected units from the same age group with stochastically assigned attributes
of interest, for the purpose maintaining the same population size. Moreover, as is the primary goal
of the study, investigators constructed a discrete-time stochastic ABM, calibrated to Rhode Island’s
statewide HIV prevalence from 2009–2014, to simulate patterns of HIV trasmission within the virtual
agent population (representing MSM aged 15–74) under the following five PrEP allocation scenarios for
comparative analysis, subject to the conditions discussed above.

PrEP Allocation Strategies:

1. no allocation (for baseline comparison);
2. random allocation;
3. allocation to “the current patient population”;
4. allocation to the population of MSM with over 5 annual sexual partners; and
5. allocation to the population of MSM with over 10 annual sexual partners.

Lastly, investigators estimated the number and proportion of infections prevented, as well as the
corresponding person-years, for each of these scenarios under various levels of PrEP coverage. In the
same order as above, a few of these results are given below, assuming 15% PrEP coverage over a 10-year
period, where incidence rate pis measued as incidences per 1,000 at-risk person-years.

PrEP Allocation Strategy Results:
(Median New Infections (#), Median Infections Averted (#), Incidence Rate)

1. 826, 0, 3.51
2. 654, 176, 2.77
3. 612, 218, 2.59
4. 595, 235, 2.52
5. 555, 275, 2.35

As discussed in part (a), centering PrEP engagement around the at-risk population of MSM with more
than 10 sexual partners per year, is proves to be the allocation strategy that yields the best results
with regards to HIV prevention.

d. Researchers discuss several limitations specific to their chosen model. We categorize and detail them as
follows.

Assumption Limitations:

• Given that the data used to model the MSM population of interest is itself (inevitably) limited,
the model falls short in that it does not adequately account for potential sources of individual
heterogeneity that drive observed processes between subjects. Although probabilities are placed
over varying characteristics for this purpose, they still do not explicitly address, for example,
differences in age-specific sex frequency nor in condom use patterns by partner type, sexual role
preference, and/or HIV serostatus. Moreover, not accounting for behaviors and interactions such
as non-dyadic encounters and brief partnerships could have also influenced inconsistencies between
observations, results, and the model’s implicit assumptions.

• It is possible for the model to have slightly underestimated PrEP efficiency, given that PrEP
assignment was inherently ignorant to different risk behaviors among prescribed agents such as
condom use. Similarly, (even if only minimally) the fact that an agent’s actual number of sex
partners varies annually suggests that agent pools for specific PrEP allocation scenarios are also
subject to change on a yearly basis. That is, for example, suppose that an agent with a mean
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number of annual sex partners below 10—who therefore has a risk of infection less than does one
with a much higher mean number of annual sex partners—that, in a given year, happens to display
an actual number of sex partners greater than 10 and is chosen for PrEP by virtue of having been
placed in the pool of higher-risk individuals eligeable for prescription. It follows that the estimated
positive impact of PrEP on the population according to the model, in this case, will be smaller
than the (“true”) impact we (likely) would have observed had an agent at higher-risk of infection
been chosen instead. For this reason, researchers argue that decreased levels of PrEP coverage (i.e.,
5% and 10%) are likely to be the most accurate in estimating the true effects of PrEP allocation
that is concentrated around MSM with at more than 10 annual sex partners.

• A meaningful phenomenon discussed in a relevant study, which investigators did not consider
when constructing the model, involves behavioral risk patterns attributed to individuals recently
perscribed PrEP, such as decreased condom use and/or increased partner acquisition rates, for
example. Such behaviors, which put agents initiating PrEP at greater risks for infection, could
(indirectly) influence the model’s treatment effect estimates, especially as it does not implement
HIV screening intervals for agents on PrEP.

• It is also possible for the model to have overestimated HIV incidence, given the assumption that
all sexual partnerships and encounters occur within the bounds of the state being modeled (Rhode
Island, in our case), which is inconsistent with the fact that MSM (in Rhode Island) typically
engage in sexual partnerships with MSM from other states. Similarly, the model does not account
for cases in which agents are prescribed PrEP from out-of-state providers, demonstrating another
potential disagreement between the model’s observations and its rather strict assumptions.

Calibration Limitations:

• While diagnoses (in Rhode Island) seldom fluctuate, the fact that model predicts rising HIV
incidence can be partially attributed to its having been calibrated to rising prevalence meanwhile
imposing steady mortality rates among those infected.

• Many of the limitations discussed regarding the model’s assumptions have additional implications
for its calibration. Namely, despite the fact that sensitivity analyses for sex frequency and annual
sex partner count were conducted to account for differences in PrEP policy effect estimates that
may arise from (resulting) varying patterns of HIV-transmission, the downfall, as researchers claim,
lies in that “these analyses also featured markedly different dynamics than those underlying the
main model”.

In addition to these limitations specific to the study model, there are some drawbacks to the ABM
approach more broadly that are important to consider as it related to the study’s findings and
implications. We summarize these as follows.

• As mentioned by investigators in the paper, one of the limitations of ABMs, and other parametric
modeling approaches, is “the considerable uncertainty surrounding model parameters”. Specifically,
given the possibility that the populations used to estimate condom use and sex frequency parameters
do not actually resemble the Rhode Island MSM population, it isn’t certain whether the model’s
outcomes and/or inferences are free of bias—namely, that which arises from using external
populations to estimate model parameters. For this reason, investigators argue the importance
of collecting as much and as detailed information as possible across relevant settings when
parameterizing ABMs.

• Aside from uncertainty regarding parameter estimates and potential bias due to data scarcity
and/or misrepresentation, approaches like ABMs can be difficult to validate in the presence of
unmeasured confounders (i.e., when modeling unobserved associations). In turn, this could both
bias our results and lead to invalid inferences. Thus, as mentioned previously with regards to the
model’s assumption limitations, it is crucial to account for as many potential unobserved sources
of variation and bias as possible by either relaxing assumptions or being explicit about removing
corresponding processes in the model.
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2. Simulating Bias and Uncertainty from Model Selection
The point of this question is to illustrate that reported regression coefficients and associated standard errors
can be incorrect when ignoring the iterative nature of actual model building. This question illustrates this
concept in a simple case. Consider a simple linear regression model.

yi = β0 + β1xi + εi, where εi ∼ N(0, 1)

Suppose you have m observations where x = −1/
√
m for half of the observed observations and x = 1/

√
m for

the other half. Your interest centers on estimating β1.

Consider the following estimation procedure. You fit the model and test H0 : β1 = 0 vs. H1 : β1 6= 0 at level
of significance α. If the test fails to reject H0, set the estimator to 0. If the test rejects, set the estimator to
the OLS estimator β̂. Call this estimator β̂α1 .

Evaluate the performance of β̂α1 for estimating β1 by setting up a simulation study. Justify the design of your
simulation study using the ADEMP framework seen in class. Further, interpret the results.

Solution

Our proposed simulation study, with an Aim to illustrate the importance of iterative processes when building
regression models for estimating parameters, involves implementing the β̂α1 algorithm to iteratively estimate
the Estimand of interest β1, allowing for varying values of K, m and α, where

• β1 is the slope coefficient for X in the linear model above;
• K is the number of iterations in the simulation;
• m is the number of observations in the data; and
• α is the significance level at which we test the null hypothesis H0 : β1 = 0 against H1 : β1 6= 0 when

fitting the model at each iteration k to decide whether to set β̂α1k equal to 0 or to the OLS estimator
β̂1k.

The Data-Generating Process, Methods, and Performance Measures aspects of the ADEMP frame-
work are summarized by the following algorithm.

Algorithm: Coefficient Estimator (β̂α1 )

hat_b1_est_sim(seed, iter, m, alpha)

• Inputs: Where,

– seed is the seed to be set for each simulation for reproducibility purposes;
– iter is the desired number of iterations K;
– m is the number of observations m in the data to be generated; and
– alpha is the chosen significance level α at which to test the standard null hypothesis for estimating
β1 at each iteration k.

• Outputs: Where,

– b0_vec is a length K vector of estimated intercepts β0k = β̂0k irrespective of α;
– b1_vec is a length K vector of estimated coefficients β1k = β̂1k irrespective of α;
– sim_b1_est is a length K vector of estimated coefficients βα1k = {0, β̂1k} subject to specified α in

the estimation procedure detailed below;
– hat_b1 is the expectation of β̂α1 (i.e., the mean of βα1k);
– mse is the mean squared error (MSE) of β̂α1 , given by MSE= 1

K

∑K
k=1(βα1k − β1)2; and

– bias is the bias of β̂α1 , given by Bias = E[β̂α1 ]− β1.
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• Estimation Procedure:

For each iteration k = 1, 2, ...,K (i.e., k in 1:iter) do the following.

1. Define the X vector of length m such that xi =
{
− 1√

m
for i = 1, 2, ..., m2

1√
m

for i = m
2 + 1, , ...,m

(i.e., x = c(rep(-1/sqrt(m), m/2), rep(1/sqrt(m), m/2))).

2. Sample m values from the standard normal distribution to obtain the m-length vector for ε such
that εi ∼ N(0, 1) (i.e., let eps = rnorm(m)).

3. Set “true” values for β0 and β1 to generate Y—parameters to be subsequently estimated. For this
study, we let β0 = 4 and β1 = 0.7 (i.e., t_b0 = 4 and t_b1 = 0.7), hence the reason we do not
include them as user-defined parameters.

4. Compute the length m vector for Y following the regression equation. That is, for each xi and εi
let yi = β0 + β1xi + εi, such that Y = 4 + 0.7X + ~ε (i.e., y = t_b0 + t_b1*x + eps).

5. Create a 2 × m data frame for use in the linear model with vectors X and Y (i.e., data <-
data.frame(x, y)).

6. Use the data to estimate the β coefficients using the lm and summary.lm functions (i.e., model
<- lm(y ~ x, data) and model_summary <- summary(model)), subsequently appending them
to their corresponding output vectors, ignoring α.

7. Obtain the βα1k vector via the β̂α1 estimator as follows. If p-value Pr(>|t|) ≤ α, then set βα1k = β1k,
otherwise set βα1k = 0 (i.e., using p = model_summary$coef[2,4], ifelse(p <= alpha, b1, 0)).
Subsequently, append βα1k to the corresponding output vector sim_b1_est.

Compute the β̂α1 estimate hat_b1 by taking the mean of the βα1k vector sim_b1_est (i.e.,
mean(sim_b1_est)).

Obtain the performance measures for β̂α1 .

– mse using MSE= 1
K

∑K
k=1(βα1k − β1)2 (i.e., sum((sim_b1_est - t_b1)ˆ2)/iter); and

– bias using Bias = E[β̂α1 ]− β1 (i.e., hat_b1 - t_b1).

It should be noted that since varying m (i.e., letting m be 10, 100, and 1,000) had no noticeably significant
effect on the simulation estimates, in addition to varying α, we analyze our estimates under varying values of
K. Hence, our simulations are initialized as follows.

Each simulation,

• uses the same random seed value seed= 4 for reproducibility;
• assumes “true” coefficients β0 = 4 and β1 = 0.7 for estimation;
• generates data sets of m = 100 observations;
• tests regression coefficient null hypotheses at significance levels α = {0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1},

where α = 1 implies ignoring the constraint altogether (i.e., accepting the OLS estimate β1k or rejecting
the null hypothesis every time);

• considers either 100, 500, or 1, 000 iterations K; and
• evaluates performance via MSE and bias.

Specifically, we consider MSE and bias to evaluate the performance of our simulation-based estimator β̂α1k as
each provides favorable insight into how well model estimates fit the data on average. Specifically, while bias
tells us how far off the average estimated value generally is from the true value β1 = 0.7, MSE sheds light on
the amount of error produced by the model used to fit the data overall. Although it is typical in practice to
accept models with low MSE to maximize prediction accuracy, this isn’t always guaranteed. As both bias
and variance contribute to MSE, lower values are often achieved by minimizing both bias and variance as
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much as possible. However, as we see in the simulation results below, testing with smaller α, which leads to
preferable MSE values, does not give optimal estimates.

Table 1: Simulation Results

K=100 K=500 K=1,000

α β̂α1 MSE Bias β̂α1 MSE Bias β̂α1 MSE Bias
0.001 0.0000 0.4900 -0.7000 0.0205 0.5317 -0.6795 0.0180 0.5313 -0.6820
0.005 0.0000 0.4900 -0.7000 0.0436 0.5660 -0.6564 0.0482 0.5804 -0.6518
0.010 0.0249 0.5171 -0.6751 0.0591 0.5848 -0.6409 0.0696 0.6080 -0.6304
0.050 0.1478 0.6005 -0.5522 0.2127 0.7112 -0.4873 0.2128 0.7671 -0.4872
0.100 0.2734 0.6528 -0.4266 0.3222 0.7836 -0.3778 0.3269 0.8278 -0.3731
0.500 0.6496 0.7116 -0.0504 0.6444 0.8946 -0.0556 0.6351 0.9558 -0.0649
1.000 0.6809 0.7253 -0.0191 0.6844 0.8963 -0.0156 0.6763 0.9607 -0.0237

As both bias and variance contribute to MSE, lower values are often achieved by minimizing both bias and
variance as much as possible. However, these results show that testing with smaller values of α, despite
decreasing error, can also bring our model to underfit the data more significantly. This is likely due to the
fact that being less restrictive with the coefficients we accept into the model more drastically increases the
estimator’s variance such that, on average, we get closer to the target estimand, but not without seeing an
increase in MSE as well. Noticeably, as bias is decreased by the increase in variance, our estimates for β1 get
closer to the true value 0.7.

Moreover, looking at estimates with regards to our chosen number of iterations, we see that, as was the
case with α, increasing values of K coincide with more accurate coefficient estimates as well as with larger
MSEs. Despite such increases not being as drastic, this nonetheless reinforces the importance of implementing
iterative model building processes when estimating parameters.

Although in practice, we are often willing to make estimators biased for the purpose of minimizing error,
this study demonstrates how too much bias can lead us further away from the true parameters we wish to
estimate as variance decreases. For this reason, it is important to consider the trade-off between bias and
variance and not immediately resort to standard hypothesis testing for estimating regression coefficients, as it
may produce incorrect results given the underlying structure of the data. Lastly, this study shows us that the
iterative nature of model building calls for simulation-based methods like this to identify phenomena that do
not necessarily align with our traditional statistical intuitions.
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Code Appendix

## Libraries
library(tidyverse)
library(lme4)
library(lmtest)
library(latex2exp)
library(kableExtra)

### Simulation Function
hat_b1_est_sim <- function(seed, iter, m, alpha){

set.seed(seed) # seed

# output vectors
b0_vec <- c() # b0 estimates (ignoring alpha)
b1_vec <- c() # b1 estimates (ignoring alpha)
sim_b1_est <- c() # (hat) b1 estimates (at sig. level = alpha)

# coefficient estimation procedure
for (i in 1:iter){

# given
x <- c(rep(-1/sqrt(m), m/2), rep(1/sqrt(m), m/2)) # x variable
eps <- rnorm(m) # normally distributed errors

# setting values for "true" b0 and b1 to generate y given m, x, and eps

# true parameters
t_b0 <- 4 # set b0 = 4
t_b1 <- 0.7 # set b1 = 0.7

# generating data (y)
y <- t_b0 + t_b1*x + eps
data <- data.frame(y=y, x=x)

# regression model
model <- lm(y ~ x, data=data) # lm for estimating b1
model_summary <- summary(model) # summary

# all estimated model coefficients
b0 <- model_summary$coef[1,1]
b1 <- model_summary$coef[2,1]

b0_vec <- c(b0_vec, b0)
b1_vec <- c(b1_vec, b1)

p <- model_summary$coef[2,4] # p-value

# b1 estimates (at sig. level = alpha)
b1_est <- ifelse(p <= alpha, b1, 0)
sim_b1_est <- c(sim_b1_est, b1_est)

}
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# hat b1
hat_b1 <- mean(sim_b1_est)

# performance measures (MSE and bias)
mse <- sum((sim_b1_est - t_b1)ˆ2)/iter
bias <- hat_b1 - t_b1

return(list(b0=b0_vec,
b1=b1_vec,
sim_b1_est=sim_b1_est,
hat_b1=hat_b1,
mse=mse,
bias=bias))

}

### Simulations (varying alpha & m)

# potential values for alpha
alpha_values <- c(0.001, 0.005, 0.01, 0.05, 0.1, 0.5)

## Group 1 Simulations
# 100 iterations for 100 observations using each alpha value (above)
# using the same seed for reproducibility
sim1_a001 <- hat_b1_est_sim(seed=4, iter=100, m=100, alpha=alpha_values[1])
sim1_a005 <- hat_b1_est_sim(seed=4, iter=100, m=100, alpha=alpha_values[2])
sim1_a01 <- hat_b1_est_sim(seed=4, iter=100, m=100, alpha=alpha_values[3])
sim1_a05 <- hat_b1_est_sim(seed=4, iter=100, m=100, alpha=alpha_values[4])
sim1_a1 <- hat_b1_est_sim(seed=4, iter=100, m=100, alpha=alpha_values[5])
sim1_a5 <- hat_b1_est_sim(seed=4, iter=100, m=100, alpha=alpha_values[6])

## Group 2 Simulations
# 500 iterations for 100 observations using each alpha value (above)
# using the same seed for reproducibility
sim2_a001 <- hat_b1_est_sim(seed=4, iter=500, m=100, alpha=alpha_values[1])
sim2_a005 <- hat_b1_est_sim(seed=4, iter=500, m=100, alpha=alpha_values[2])
sim2_a01 <- hat_b1_est_sim(seed=4, iter=500, m=100, alpha=alpha_values[3])
sim2_a05 <- hat_b1_est_sim(seed=4, iter=500, m=100, alpha=alpha_values[4])
sim2_a1 <- hat_b1_est_sim(seed=4, iter=500, m=100, alpha=alpha_values[5])
sim2_a5 <- hat_b1_est_sim(seed=4, iter=500, m=100, alpha=alpha_values[6])

## Group 3 Simulations
# 1000 iterations for 100 observations using each alpha value (above)
# using the same seed for reproducibility
sim3_a001 <- hat_b1_est_sim(seed=4, iter=1000, m=100, alpha=alpha_values[1])
sim3_a005 <- hat_b1_est_sim(seed=4, iter=1000, m=100, alpha=alpha_values[2])
sim3_a01 <- hat_b1_est_sim(seed=4, iter=1000, m=100, alpha=alpha_values[3])
sim3_a05 <- hat_b1_est_sim(seed=4, iter=1000, m=100, alpha=alpha_values[4])
sim3_a1 <- hat_b1_est_sim(seed=4, iter=1000, m=100, alpha=alpha_values[5])
sim3_a5 <- hat_b1_est_sim(seed=4, iter=1000, m=100, alpha=alpha_values[6])

### Simulation Results

## (1) K=100
# hat b1 estimate for each alpha
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hat_b1_est1 <- c(sim1_a001$hat_b1, sim1_a005$hat_b1,
sim1_a01$hat_b1, sim1_a05$hat_b1,
sim1_a1$hat_b1, sim1_a5$hat_b1)

# hat b1 MSE for each alpha
hat_b1_mse1 <- c(sim1_a001$mse, sim1_a005$mse,

sim1_a01$mse, sim1_a05$mse,
sim1_a1$mse, sim1_a5$mse)

# hat b1 bias for each alpha
hat_b1_bias1 <- c(sim1_a001$bias, sim1_a005$bias,

sim1_a01$bias, sim1_a05$bias,
sim1_a1$bias, sim1_a5$bias)

# b0 and b1 estimates ignoring alpha
c(mean(sim1_a001$b0), mean(sim1_a001$b1)) # closest to true values

## (2) K=500
# hat b1 estimate for each alpha
hat_b1_est2 <- c(sim2_a001$hat_b1, sim2_a005$hat_b1,

sim2_a01$hat_b1, sim2_a05$hat_b1,
sim2_a1$hat_b1, sim2_a5$hat_b1)

# hat b1 MSE for each alpha
hat_b1_mse2 <- c(sim2_a001$mse, sim2_a005$mse,

sim2_a01$mse, sim2_a05$mse,
sim2_a1$mse, sim2_a5$mse)

# hat b1 bias for each alpha
hat_b1_bias2 <- c(sim2_a001$bias, sim2_a005$bias,

sim2_a01$bias, sim2_a05$bias,
sim2_a1$bias, sim2_a5$bias)

# b0 and b1 estimates ignoring alpha
c(mean(sim2_a001$b0), mean(sim2_a001$b1)) # closest to true values

## (3) K=1,000
# hat b1 estimate for each alpha
hat_b1_est3 <- c(sim3_a001$hat_b1, sim3_a005$hat_b1,

sim3_a01$hat_b1, sim3_a05$hat_b1,
sim3_a1$hat_b1, sim3_a5$hat_b1)

# hat b1 MSE for each alpha
hat_b1_mse3 <- c(sim3_a001$mse, sim3_a005$mse,

sim3_a01$mse, sim3_a05$mse,
sim3_a1$mse, sim3_a5$mse)

# hat b1 bias for each alpha
hat_b1_bias3 <- c(sim3_a001$bias, sim3_a005$bias,

sim3_a01$bias, sim3_a05$bias,
sim3_a1$bias, sim3_a5$bias)

# b0 and b1 estimates ignoring alpha
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c(mean(sim3_a001$b0), mean(sim3_a001$b1)) # closest to true values

## Results Data Frame
b1_1 <- c(hat_b1_est1, hat_b1_est_sim(seed=4, iter=100, m=100, alpha=1)$hat_b1)
b1_mse1 <- c(hat_b1_mse1, hat_b1_est_sim(seed=4, iter=100, m=100, alpha=1)$mse)
b1_bias1 <- c(hat_b1_bias1, hat_b1_est_sim(seed=4, iter=100, m=100, alpha=1)$bias)

b1_2 <- c(hat_b1_est2, hat_b1_est_sim(seed=4, iter=500, m=100, alpha=1)$hat_b1)
b1_mse2 <- c(hat_b1_mse2, hat_b1_est_sim(seed=4, iter=500, m=100, alpha=1)$mse)
b1_bias2 <- c(hat_b1_bias2, hat_b1_est_sim(seed=4, iter=500, m=100, alpha=1)$bias)

b1_3 <- c(hat_b1_est3, hat_b1_est_sim(seed=4, iter=1000, m=100, alpha=1)$hat_b1)
b1_mse3 <- c(hat_b1_mse3, hat_b1_est_sim(seed=4, iter=1000, m=100, alpha=1)$mse)
b1_bias3 <- c(hat_b1_bias3, hat_b1_est_sim(seed=4, iter=1000, m=100, alpha=1)$bias)

b1_df <- data.frame(alpha=c(alpha_values, 1),
b1_1, b1_mse1,b1_bias1,
b1_2, b1_mse2, b1_bias2,
b1_3, b1_mse3, b1_bias3)

b1_df <- as.data.frame(apply(b1_df, 2, round, 4))

# NOTICE: estimate gets closer to true value with increasing alpha values
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